
DAFS Storage for High Performance Computing using MPI-I/O: Design and
Experience

Vijay Velusamy, Anthony Skjellum
MPI Software Technology, Inc.

Email: {vijay, tony}@mpi-softtech.com

Arkady Kanevsky*†, Peter Corbett
Network Appliance

Phone: (781) 768-5395
Fax: (781) 895-1195

Email: {arkady, pcorbett}@netapp.com

A key goal of this effort is to demonstrate and develop heterogeneous and distributed computing
technologies that are applicable to DoD and scientific communities, while maintaining and benefiting
from industry standards that could be applied to high performance computing.

High performance computing systems based on clusters of compute nodes, connected via a high
speed interconnect, are becoming popular for large-scale parallel applications, forming a highly
scalable infrastructure. Most large-scale scientific applications are highly I/O-centric and have a
tremendous need for a similarly scalable file I/O subsystem. DAFS is a well-defined high-
performance protocol for file access across a network as well as set of APIs, uDAFS, for user level
OS-bypassing application programming, designed to take advantage of RDMA-based transports, such
as Virtual Interface Architecture (VIA), InfiniBand Architecture[1], and iWARP.

Although DAFS was not originally designed for parallel I/O, this effort aims to demonstrate that
DAFS can easily used directly or extended for the creation of a parallel file system. Most parallel file
systems are designed to use metadata for parallel files, stored as objects (often themselves files)
separate from the data of those files, and the data of the individual files is striped across a number of
different server nodes. It is envisioned that this effort would demonstrate the adoption of DAFS and
its parallel features to high performance computing environments, strengthening the technology base,
and providing an opportunity for the adoption of widely used technology to the largest high
performance computing programs such as ASCI.

This effort utilizes ChaMPIon/Pro, an efficient commercial implementation of the MPI-1.2 standard
for message passing interfaces [3], to demonstrate the applicability of DAFS for scalable I/O. The
MPI I/O implementation in ChaMPIon/Pro is designed to support both parallelism, and portability
[2]. Parallelism is achieved in the MPI I/O layer, by implementing the MPI I/O APIs, while the BAFS
layer provides portability (Figure 1). BAFS consists of a set of APIs that provide the necessary
functionality for parallel I/O. BAFS provides a thin abstract I/O interface between MPI I/O and
DAFS. It provides a non-collective I/O interface that function independently for each MPI process
created. MPI I/O operates on the communicator level, involving communication between multiple
processes. The MPI I/O layer manages collective I/O and shared file pointers. This layer maintains
data consistency across different processes and delivers file atomicity semantics.

The BAFS implementation benefits from early binding and persistency for repeated file access
patterns that use the same data structure. In this case, the data structure is allocated and initialized
only once. The user can then call the non-blocking data access routines to fetch the data repeatedly
making use of the same data structure.

* Corresponding Author
† Presenting Author

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
20 AUG 2004

2. REPORT TYPE
N/A

3. DATES COVERED
 -

4. TITLE AND SUBTITLE
DAFS Storage for High Performance Computing using MPI-I/O: Design
and Experience

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
MPI Software Technology, Inc.

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release, distribution unlimited

13. SUPPLEMENTARY NOTES
See also ADM001694, HPEC-6-Vol 1 ESC-TR-2003-081; High Performance Embedded Computing
(HPEC) Workshop (7th)., The original document contains color images.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

14

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

In parallel file systems, files are generally striped across the server nodes, with each server node
managing its own pool of disk space. File data is distributed by dividing the file into subfiles, referred
to as cells [4]. Cells are distributed among the server nodes, so that each cell resides entirely on one
server node, and zero, one or more cells of a file may reside on each of the server nodes in the parallel
file server. The cell usually has an inode, including a blocklist, and the server node allocates space to
each cell that it owns from its own pool of disk. In this effort for adapting DAFS for parallel I/O, a
cell specific decomposed view of the parallel file is presented, so that the I/O library can perform the
mapping of data to cells directly. Also file metadata servers are not separated from file data servers.
In other words, the external metadata of a file, that is visible to the clients, including access control
lists, cells locations, file attributes, are stored in a single metadata object, called metanode of the file.
The details of the metadata need not be known to any application that needs to access the file.

The design of MPI I/O for DAFS allows the cache coherence and token/lock based read and write
access control that are generally present in cluster file systems to be eliminated. There is no
contention among the nodes of a parallel application for temporary access rights to data once the
parallel program gains access rights to the entire file. This avoids any bottlenecks to restrict data flow,
enhances the scalability of the system. Since DAFS is designed to benefit from high bandwidth low-
latency RDMA access to file data, and because it can offload the client almost completely from
performing file system and I/O tasks, the client CPU utilization for I/O is reduced tremendously,
allowing the overlap of computation and I/O and better utilization of these extra CPU cycles.

It is expected that performance numbers for this effort would be available in September.

M P I I / O

B A F S

D A F S D A F S D A F S D A F S D A F S

S D S D S D S D S D

B A F S : B u l ld o g A b s t r a c t F i le S y s t e m
D A F S : D ir e c t A c c e s s F ile S y s t e m
S D : S t o r a g e D e v ic e

B A F S B A F S B A F S B A F S

P a r a lle l A p p l ic a t io n

References:

[1] DAFS Collaborative, “Direct Access File System API Specification v1.0,”
http://www.dafscollaborative.org

[2] Kumaran Rajaram, Anthony Skjellum, Rossen P. Dimitrov, Purushotham V. Bangalore, Vijay
Velusamy, and David Leimbach, “Design, Implementation, and Evaluation of a High
Performance Portable Implementation of the MPI-2 I/O Standard API,” submitted to Parallel
Computing, November 2002.

[3] MPI Forum, “MPI - The Message Passing Interface Standard,”

http://www-unix.mcs.anl.gov/mpi/

[4] Peter Corbett, “DAFS Extensions for Parallelism,” Network Appliance, August 2002.

1
Public

DAFS Storage for High Performance
Computing using MPI-I/O:

Design and Experience

Arkady Kanevsky &
Peter Corbett

Network Appliance

Vijay Velusamy &
Anthony Skjellum

MPI Software
Technology

Why DAFS?

DAFS for Parallel I/O
– Industry Storage Standards for HPC Community
– Performance, Performance, Performance
– Reduce TCO (total cost of ownership)

Performance of RDMA based File System
– Bandwidth
– Latency
– CPU overhead

Transport independence
– Virtual Interface (VI) Architecture
– InfiniBand Architecture
– iWARP

Network Appliance filer as DAFS server for transport
independence, performance and multi-protocol
support

Direct Access File System protocol

A file access protocol designed specifically for
high-performance data center file sharing

– Optimized for high performance
– Semantics for clustered file sharing environment

A fundamentally new way for high-performance
and cluster applications to access file storage

– Provides direct application access to transport resources
– Avoids Operating System overhead

What is DAFS?

File access protocol providing all the features
of NFS v3

Includes NFS v4 features
– File locking, CIFS sharing, security, etc

Adds data sharing features for clusters
– Clustered apps
– Graceful fail-over of clustered file servers
– High volume, optimized I/O applications
– Efficient multi-client sharing

Designed for Direct Access (RDMA) Transports
– Optimal use of transport capabilities
– Transport independent

What Does DAFS Do?

DAFSLocal FS

File
System

SCSI
Driver

FS Switch

NFS

TCP/IP

FS Switch

NFS

Buffers
DAFS
DAPL

Application

Buffers

Application

Buffers

Application

Buffer
Cache

HCANIC HBA

Buffer
Cache

Packet
Buffers

NIC Driver HBA Driver HCA Driver

File Access Methods

User

Kernel

H/W

No data packet fragmentation or reassembly
– Benefit similar to IP Jumbo Frames, but with larger

packets
• less transmission overhead, fewer interrupts
• no ordering and space management issues
• no data copying to recreate contiguous buffers

No realignment of data copies
– Protocol headers and data buffers transmitted

separately
– Allows data alignment to be preserved

No user/kernel boundary crossing
– Less system call overhead

No user/kernel data copies
– Data transferred directly to application buffers

Direct Access Performance Benefits

Direct-attached (FC) storage w/ local FS (ufs)

Raw access to direct-attached (FC) storage

App Server
CPU µsec/op

113

89

76

Direct-attached (FC) storage w/ volume manager

DAFS kernel device driver (w/ VI/IP HBA)

User-level DAFS client (w/ VI/IP HBA)

70

28

User-level DAFS client (w/ 4X IB HCA) - estimated <20

• Sun E3500 (400MHz) w/ Solaris 2.8
• OLTP workload – 66% reads
• 4kB transfers; async I/O

DAFS Performance

Why MPI-IO?

Parallel File System API
Combined API for I/O and Communication
File I/O and direct storage semantic support
File Info for file “partitioning”
Memory Registration for both I/O and Communication
ChaMPIon/Pro for parallelism and portability

– first commercial MPI-2.1 version
– Scaling to thousands and tens of thousands of processors and beyond
– Multi-device support (including InfiniBand Architecture)
– Topology awareness
– Thread safety
– Optimized collective operations
– Efficient memory (and NIC resource) usage
– Integration with debuggers and profilers
– Optimized MPI-IO

• Early binding
• Persistency
• Layering blocking MPI calls on asynchronous transport operations

Design overview

MPI-IO partitions user file according to MPI_FILE_INFO
into cells
Uses uDAFS API on the client to reduce CPU overhead
and improve other performance measures
Each cell is a separate file stored on DAFS server
(NetApp filer)

– Distribute cells across multiple DAFS servers
– Multiple cells can be stored on the same DAFS server

Metadata per file
– Metadata is stored as a file and accessed on File Open,

Close, or attributes changes

MPI file accesses: Read, Write - directly accesses
cells with no or minimal conflict.

– No Metadata accesses
– DAFS supports locking for conflict resolution.

Metadata & File Virtualization

Metadata contains:
– File ACL
– File attributes
– Cell list

• Cell number
• Cell file name

Cell file convention
– “file_name”_ “unique_identifier”_ “cell_number”

Metadata Files
• Separate volume on DAFS server
• Volume mirrored between 2 DAFS servers

Cells are in a separate volume on each DAFS server
Security

– Metadata ACL determines access to all of its cells

Early Experience - I

2 DAFS servers, 2 MPI client

Clients on Sun Ultra 30 with 296 MHz processors

Network – 1Gb VI-IP

MPI-IO (Write)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1 12 13 14 15 26 31 47 52

Number of Cells

L
at

en
cy

 (
se

co
n

d
s)

50 MB File

Early Experience - II

2 DAFS servers, 2 MPI client

Clients on Sun Ultra 30 with 296 MHz processors

Network – 1Gb VI-IP

MPI-IO (Write)

0
20
40
60
80

100
120
140
160
180
200

1 (
40

96
K bl

oc
ks

)

2 (
20

48
K bl

oc
ks

)

4 (
10

24
K bl

oc
ks

)

8 (
51

2K
 bl

oc
ks

)

16
 (2

56
K bl

oc
ks

)

32
 (1

28
K bl

oc
ks

)

64
 (6

4K
 bl

oc
ks

)

Number of Cells

B
an

d
w

id
th

 (
M

B
/s

)

4MB File

	DAFS Storage for High Performance Computing using MPI-I/O: Design and Experience
	
	Vijay Velusamy, Anthony Skjellum

	Abstract button:
	Presentation button:
	Agenda button:
	Session button:

